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Abstract. We have calculated the number of total configurations C of a polymer chain 
up to third order in the excluded volume parameter U .  The results support that close to 
the dimensionality d = 4 the perturbation series sums up to a simple expression which can 
be determined from second-order perturbation theory. The good solvent behaviour, where 
the statistical quantities characterising the polymer molecule show a power law dependence 
on the molecular weight N, is deduced from this solution. Though the critical exponents 
are independent of U,  the prefactors depend on it. The meaning of the fixed point as that 
point where the exponents can be evaluated relatively easily can also be seen. The 
proposed expressions for C and the size of the macromolecule also describe the chain for 
small negative U (poor solvent) where the chain starts to shrink. 

1. Introduction 

The parameter u N ( ~ - ~ ) ’ *  (N -molecular weight of the chain) which expresses the 
non-idealities in the behaviour of a polymer chain decreases as the dimensionality of 
the system increases and the fact that d = 4 is a critical dimensionality above which 
the non-idealities disappear is well established (Wilson and Kogut 1974). With the 
reduction of the non-idealities the difficulty in searching for a complete solution to 
the problem by summing up for example all perturbation order terms in U (Edwards 
1975, Lax et a1 1978) also decreases. However, the advantages from a solution at 
d = 4 - E  ( E  small) are large, since the continuous character of d permits the transfer 
of the properties of the solution to smaller realistic dimensionalities (Kosmas and 
Freed 1978). 

In previous work we have calculated C up to second order in U at d = 4 - E  ( E  << 1) 
determining the critical exponents (Kosmas 1981a) as well as other properties of the 
coil (Kosmas 1981b). In the present work we make third-order calculations on the 
quantity C, the total number of configurations, which is related to the partition function 
and the free energy of the macromolecule, trying to see the overall behaviour of the 
expansion. Second-order perturbation theory at d = 4  gives for C the expression 
(Kosmas 1981a) 

(1.1) 
Recent results on an easier problem (Kosmas 1981c) have shown that the series in 
U In N sums up exactly to a simple expression of the general form [1+ a (U in N)lb .  

t Address for correspondence: Chemistry Department, University of Ioannina, Ioannina, Greece. 

C = [ ~ - ~ U N + ( & ) ( ~ U N ) ~ - .  . .][1+2(u lnN)-6(u  lnN)’+.  . .]. 
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For the present excluded volume problem a and b can be uniquely determined from 
a second-order perturbation theory. Using relation (1.1) we take that a = 8 and 6 = f .  
The purpose of the present work is to check the validity of the above summation by 
evaluating the next third-order term of the general expression 

C = exp(-2uN)[l+ 8(u In TV)]”~.  (1.2) 

Thus one can check if the third-order perturbation results yield the third-order 
expansion term of the expression [l + a(u  In N)]’,  a = 8, b = $, which is 

b(b  - l ) (b  -2)a3(u In N)3/6 = 28(u In N ) 3 .  

The results come out exactly as expected and the calculations are presented in 0 2. 
In § 3 we propose an expression for the mean end-to-end square distance (R’) and 
we present the conclusions of the present work. Finally in the appendix we demonstrate 
the evaluation of third-order diagrams. 

2. The total number of configurations C 

The model which we are going to employ is a discrete model equivalent to the 
continuous model extensively used before (Edwards 1965, Freed 1972). The polymer 
chain consists of N beads located at positions defined by the vectors {ri, i = 1,2 ,  . . . , N} 
and the total number of configurations related to the partition function and the free 
energy of the system is given by a multiple integral over all the positions of the beads 

N N N N  

ddr,exp(-(d/2?rl’) ( r , - r r + 1 ) 2 - t B  r = 1 , = 1  1 V ( r , - r , ) ) .  
r= l  

i + J  

In this expression 1 is an effective unit length which, for simplicity, will be taken to 
be equal to unity and B is proportional to the inverse of the temperature. The first 
term in the Boltzmann factor is a connectivity term guaranteeing that all polymeric 
beads are connected to a chain while the second potential term represents the two-body 
interactions between all pairs of beads. As is customary it will be approximated by 
$BV(ri - r , )  = usd(r i , - r j )  (Fixman 1955, Yamakawa 1971) where U, the excluded 
volume parameter, is the binary cluster integral. 

Expanding expression (2.1) in powers of u and using the same diagrammatic 
language used before (Kosmas 1981a), we work up to third order in u so that 

C = p ,”{ 1 - U [ 2 F ]  + $4 *[ 8.7773- + 8 ~T+ 8+] 

with po a normalisation factor representing the activity of an ideal chain. The diagrams 
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up to second order in U have been previously evaluated at d = 4 and for large N 
(Kosmas 1981a) and are 

0 =N-ln  N ( 2 . 3 ~ )  

(2.36) = :N2 - 2 N  In N + In2 N 

-3-= N In N -In 2N ( 2 . 3 ~ )  

-e--= - $ln 2N. (2.3d) 

There are eight different third-order diagrams (Barrett and Domb 1979). They 
are given in equation (2.2) together with their multiplicity. Each one represents a 
six-fold summation coming from the three delta functions of the u 3  term. The 
expression, to be summed up as the expansion of equation (2.1) implies, is the number 
of total configurations of Gaussian chains with three contacts. Each expression depends 
on the topology of each diagram. For the first four diagrams consisting of three loops 
of lengths 11, 12 and l 3  the contribution from each loop is l/(its length)d/2 giving for 
the final expression l/(111213)d'2, The diagrams 

have a loop of length l4 and three other characteristic segments of lengths 11, l 2  and 
l 3  yielding the expression (Kosmas 1981a) 1/[4d/2(1112+ 1 2 1 3 ) d / 2 .  The two last 
diagrams have five characteristic segments each. The diagram 

has an expression to be summed equal to 1/[lIl2l3+ (14+ l 5 ) ( l l l 2 +  1113 + 124)]"/* where 
l4 and Is are the lengths of the AB and AC segments and 11, l2  and l3  are the lengths 
of the three segments from B to C. Finally the diagram 

A ~ B  

yields the expression 

1 / [ [ 1 1 2 ( 1 3 + 1 4 ) + 1 3 [ 4 ( 1 1 + 1 2 ) + 1 5 ( 1 ~  +12)(13f14)Id/2  

with l s  the length of the AB segment, I I  and l 2  the lengths of the two AC segments 
and l3  and 1, the lengths of the other two CB segments. After these remarks the 
third-order diagrams can be written as 

N - l  N N - 1  N N - I  

-= 2 1/(111213)"" 
r = l  j = r + l  k = j  I = k + l  m = l  n = m + l  

I ,  = j - i  1 2 ~ 1 - k  13=n-m ( 2 . 4 ~ )  

(2.46) 1 ,  = j - i  1 2 =  k - 1  - j + i  13=n-m 
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11 = j-i 1 2 =  k -1- j+i  1 3 =  n - m  - k + l  

ll = j-i l3  = n - m - j +  i - 1 + k 

l l = j - l  l 2 = l - i  1 3 = k - j  1 4 = m - n  

( 2 . 4 ~ )  

(2.4d) 

(2.4e) 

l l = j - n  1 2 = n - i  l3  = m - j - 1 +  k / 4 = / - k  (2.4f) 

l l = k - j  1 3 = j - l  1 4 = i - m  1 5 = n - k  
( 2 4 )  

l l = m - i  1 2 = j - m  1 3 = / - n  1 4 = n - k  I s  = k - j .  
(2.4h) 

The summations are approximated with integrations and the values of the diagrams 
are found to be 

-= i N 3  - :N2 In N + 3N In 2N -In 3N ( 2 . 5 ~ )  

F= 
T= 

kN’ In N - 2 N  In ’N +In 3N 

N In ’N -In ’ N  

db = O ( N 3 ,  N 2  In N, N In 2N, In 3 N )  

(2.56) 

( 2 . 5 ~ )  

(2.5d) 

-?N In ’N +$In 3N (2.5e) 

@= 

-a-= 

$N In ’ N - ;  In 3N 

-1n 3~ 

-In 3N. 

Examples of the evaluation of third-order diagrams are given in the appendix. 
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Putting the values of the diagrams in equation (2.2) we end up with the expression 

C = pr[1- u(2N - 2  In N)+ u2(2N’--4N In N -6 In ’ N )  

-u3($N3-4N2 In N -  12N In 2N -28 In 3 N ) + .  . .] 
= poN[i - ~ U N  + ( f ) ( 2 U ~ ) 2  - ( & 2 u ~ ) 3  + . . .I 

X[1+2(u InN)-6(u InN)’+28(u InN)3- .  . .] 
= pi? exp(-2uN)[l+ 8(u In i ~ ) ] ” ~  d =4 .  (2.6) 

Notice that the numbers 8 and a are uniquely determined from second-order perturba- 
tion results and that the third-order calculation is a check to the validity of the 
summation of the series into the proposed closed expression. Calculations are also 
possible for dimensionalities less than four and, as can be seen from the first diagrams 
at d = 4 - E  (E << l), the only alteration to the closed expression equation (2.6) is just 
the replacement of In N with (2/e)(N‘/’ - 1). This replacement gives, for the total 
number of configurations C, the expression 

C =p.o” exp(-2uN)[l+8~(2/~)(N”~- l)]’l4 (2.7) 

which can be used for deriving useful conclusions. We shall postpone these conclusions 
to the next section where we shall give the corresponding expression for the mean 
end-to-end square distance (R ’) expressing the size of the macromolecule. 

3. Mean end-to-end square distance and conclusions 

Second-order perturbation theory can be used to determine a closed algebraic 
expression for the mean end-to-end square distance (R’) of the coil. Previous results 
(Kosmas 1981a) and the above analysis imply that 

Several conclusions can be derived from this expression for the size of the 
macromolecule. 

(i) At the limit of large N and in the U > 0 region the power law 

(R)’ = ( ~ ~ u / E ) ’ / ~ N ’ + ‘ / ’  = ( 16 U /  E ) ‘I4 N ”4 - = (3.2) 
is obtained where we see that the meaning of an exponent 2 ~ ~ - ~  = 1 + : E  is valid (de 
Gennes 1972) in agreement with previous findings (des Cloizeaux 1981). The prefactor 
in expression (3.2) depends on U giving a dependence of the size of the polymer on 
the temperature and other characteristics of the polymer and the solvent. 

(ii) The fixed point, as a special point where the exponents can be determined 
relatively easily, is represented by the point at which U becomes equal to U* = ~ / 1 6  
(Kosmas 1981a). For this value of U the other constants in equation (3.1) cancel 
exactly leaving a pure power law. 

(iii) Expression (3.1) also describes the size of the polymer for small negative U 
(poor solvent) (Lifshitz et a/ 1978, Moore and Al-Noaimi 1978, Duplantier 1980). 
The quantity (~/E)(N‘”- 1) takes large values so that negative U reduce ( R 2 ) ’ / 2  to 
values smaller than the ideal 0 size implying shrinking of the coil. 
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Appendix 

In this appendix we are going to demonstrate a way of evaluating the third-order 
diagrams, As a first example we will find the value of the diagram given by equation 
( 2 . 4 ~ ) .  Converting the summations of equation (2.40) into integrations and introduc- 
ing the natural variables 11, l2  and l 3  we end up with the expression 

-=I d11~N-"d12/ l  d/311 dm l/ lf l ; l i  
N N-I,-12 

1 

d =4 .  (AI )  

The integrations over i, k and m are easy because there is no dependence of the 
function to be integrated on them. Equation ( A l )  then gives 

N - / ,  - I ,  

= d IlNd1l /lN-i' dl2 Il d/g (N - I 1  - 12 - 13)  3 / / 1 / 2 / 3 .  2 2 2  (A2) 

Expanding [(N-l1-l2)-(l3)I3 in powers of l3  and integrating over 1 3 ,  two terms 
survive in the limit of large chain lengths giving 

N-1,  

= 4 /lNdll/lf Il d12 [(N - 1; - ld3 - In N(N - 11 - 12)2]/1;. 

(A31 

The double integrations over the two parts of equation (A3) are straightforward and 
yield in the limit of N + 0;) the results 

N - l ,  

/ lNdll / l f I ,  d12(N-11-12)3/li = N 3 - 6 N 2 1 n N + 6 N  1n2N (A4) 

and 
N - / ,  

j lNdll/ l : j l  d12(N-11-12)2/1; = N 2 - 4 N I n N + 2 1 n 2 N .  

Putting these results back in equation (A3) we find the final value of the 

(A51 

diagram 
which wequote in equation (2.5a)l 

The corresponding three-fold integral on the length variables 11, l2  and l3  for the 

diagram 1 comes out to be 
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Performing the f3 integration we find 

-$ = \,Ndfl/ll \lN-i' df2{(N-11-12)[-1/(N-f1-12)+1]-1n(N-f1-f2)}/12. 

(447) 

The part of equation (A7) which includes the -l/(N - f I  - f2) ratio gives insignificant 
terms in the limit of large N while the In (N - Il - 1 2 )  part yields In N. The double 
integrations are straightforward yielding the result quoted in equation ( 2 5 ) .  

can be evaluated while the diagram In a similar way the diagram 

gives zero contribution in the limit of large N. Lengthier calculations are needed for 

the diagrams % and -* where we have four lengths and even lengthier for 

the last two diagrams@ and -/7 where five lengths appear. Their contributions 

are given in equation (2.5). 
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